

Effect of Electron Beam Freeform Fabrication (EBF³) Processing Parameters on Composition of Ti-6-4

Cynthia L. Lach, Karen Taminger and A. Bud Schuszler II

NASA Langley Research Center

Sankara Sankaran Lockheed Martin

Helen Ehlers, Rahbar Nasserrafi, and Bryan Woods Spirit AeroSystems, Inc.

> AeroMat 2007 Baltimore, Maryland June 27, 2007

Ti6-4 EBF³ Team Contributions

> NASA Langley Research Center

- > Developed and conducted Ti-6-4 EBF³ depositions (single bead and multibead) for processing study
- > Sample preparation and specimen photography
- > Metallographic analysis
- > Multi-bead micro-chemical analysis (wavelength dispersive spectroscopy)
 Cindi Lach, Karen Taminger, Bud Schuszler II and Richard Martin (NASA)
 Sankara Sankaran, David Hartman, and Jim Baughman (Lockheed Martin)

> Spirit AeroSystems, Inc.

- > Single-bead bulk chemistry analysis (inductively coupled plasma technique; samples provided by NASA LaRC)
- > Correlation of single bead deposit chemistry with processing parameters *Helen Ehlers, Rahbar Nasserrafi, and Bryan Woods*

Evolution of Metallic Aerospace Structures: EBF³ Enables Paradigm Shift in Design

Designed for Assembly

Built-up Structure

Designed for Performance Unitized Structure

- Skin and stiffeners machined from plate
- Multiple parts and fasteners
- High:cost, scrap, weight, and assembly time
- Skin machined from sheet & integrated with near net stiffeners (SPF, extrusions, etc.)
- •Replace fasteners (FSW, RSW)
- •Reduce: cost, weight, parts, fasteners, and assembly time

- •EBF3 combines fabrication of material+structure
- •Enhanced performance through multi-functional novel design
- Minimize: scrap, weight, fasteners and assembly time

Electron Beam Freeform Fabrication (EBF³) Capability at NASA LaRC

Capability

- Computer controlled, electron beam gun (42kW), dual wire feed, 6-axis positioning, in a high vacuum
- Build envelope (6'x 2'x 2') with a heating platen (900°F)

Process

- Layer-additive process: wire fed into molten pool created by an electron beam (100% dense)
- Built from a CAD file: 2-D slices representing 3-D object
- Produces near-net shape parts with material properties equivalent to annealed wrought product

Challenges of Molten Pool Processing in a Vacuum

- EBF³ process occurs in a high vacuum (10⁻⁵ torr) and requires sustaining a molten pool
- EBF³ of Ti-6-4 processing occurs at 1800°F above melting temperature of the alloy
- Selective vaporization of Al occurs
- Study conducted to understand the influence of processing parameters on composition and microstructure changes related to Al loss

Variation in Vapor Pressure of Elements with Temperature

EBF³ Process Development for Ti-6-4

Objectives

- Optimize EBF³ processing parameters to avoid selective vaporization of Al
- Evaluate deposit chemistry and microstructure as a function of beam power, wire feed & translation speed

Approach

- Conduct a Design of Experiment (DOE) to identify process parameter ranking and interactions
- Composition analysis (Bulk and Micro-chemistry)
- Conduct systematic trials (single/multi-bead) of outer processing envelope limits

Design of Experiment (DOE) Approach to Control the EBF³ Process and Reduce Variation

Taguchi Design (L27)

- 3-Factorial, 3-Level design (fully balanced, mutually orthogonal array)
- Ability to separate and rank effects of each parameter and any interactions
- Randomly selected deposit schedules

Process variables (3 parameters @ 3 levels)

- Beam Power (BP): Baseline, 2 and 3 times
- Translation Speed (TS): Baseline, 2 and 7 times
- Wire Feed Rate (WF): Baseline, 4 and 8 times

Process Constants

• Voltage, Focused Beam, Wire diameter (0.063 in), Acid cleaned base plate (0.39 in), Preheat, Deposited same day at temperatures ≤ 150°F

Processing Envelope Energy Density (ED) Levels per Unit Volume of Material Deposited

- Taguchi 3x3 matrix
- Conducted randomly

7 July 20	C261194	7 (<i>158</i> 17 2005	31001107	
Run#	Beam Power	Translation Speed	Wire Feed Rate	
1		High	High	
2	High		Medium	
3			Low	
4		Medium	High	
5	High		Medium	
6			Low	
7	High	Low	High	
8			Medium	
9			Low	
10	Medium	High	High	
11			Medium	
12			Low	
13	Medium	Medium	High	
14			Medium	
15			Low	
16	Medium	Low	High	
17			Medium	
18			Low	
19	Low	High	High	
20			Medium	
21			Low	
22		Medium	High	
23	Low		Medium	
24			Low	
25		Low	High	
26	Low		Medium	
27			Low	

- •ED = BP/[Area WIRE *WF*time], kW/in³
- ED levels varied from baseline to 24 times

Bulk Chemistry Analysis of Ti-6-4 EBF³ DOE Single-bead depositions

0.5 mm **Baseplate**

- Single layer deposits produced at NASA LaRC
- Bulk analysis conducted on material excised from deposit bead only
- Bulk chemical analysis performed by Spirit AeroSystems, Inc. using ICP – Al, V, Ti, and Fe

Bulk Chemistry Analysis of Ti-6-4 EBF³ DOE (3x2) Single-bead depositions

Subset:	3 parame	AI wt%	V wt%		
Ti-6-4 Specifi	cation Limit	5.50 - 6.75	3.50 - 4.50		
Base Plate		6.25	3.87		
Wire		6.39	3.81		
Run#	ВР	TS	WF		
1	High	High	High	5.95	4.00
3	High	High	Low	5.05	4.24
7	High	Low	High	6.12	3.96
9 🛠	High	Low	Low	5.87 🔻	4.10
19	Low	High	High	6.54	4.24
20	Low	High	Low	5.07	4.10
25	Low	Low	High	5.71	3.81
27	Low	Low	Low	4.97	3.97

- For WF = Low Al wt% < specification limits (except # 9)
- Average Al wt% in DOE schedules = 5.66 wt%
- Drop in Al content varied (0.27 1.42 %)

Cynthia.l.lach@nasa.gov

Effect of EBF³ Process Parameters on Al Content

- Wire Feed rate has the greatest impact on Al content
- Beam Power also plays a significant role
- Translation Speed is insignificant

Significance of Process Parameters: Ranking and Interactions

- WF had strongest impact on Al content (WF >> BP, TS)
- BP & TS had minimal effect, strong coupling results in 2nd largest Al loss
- All parameters and 2-level interactions > TS
- TS and 3-level coupling are statistically insignificant

Micro-Chemistry Analysis of Multi-bead (10) Deposit:

- Deposit was 10 beads high; fabricated at NASA LaRC
- Wavelength Dispersive Spectroscopy (WDS) using a scanning electron microscope (SEM)
- Higher fidelity than energy dispersive spectroscopy
 - Automation allows scans at micron level increments
 - Standardization performed on base plate using bulk chemistry

Micro-Chemical Results of Multi-bead (10) Deposit: **BP=High TS=Low WF=Medium**

WDS Line Scan in 500 µm increments

- Discrete change in Al and Ti Wt % at base plate/bead intersection
- Slight loss of Al through deposit
- Al loss independent of microstructure and bead interfaces
- V is unaffected by EBF³ process

Micro-Chemical Results of Multi-bead (10) Deposit: **BP=High TS=Low WF=Medium**

Cynthia.l.lach@nasa.gov

Micro-Chemical Results of Multi-bead (10) Deposit: BP=Medium TS=Low WF=Medium

Bulk Composition Results of Single-bead Deposit Ti-6-4 EBF³ DOE (3 factor x 2 level)

Effect of process parameters on Al Loss

Individual impact of Parameters (BP, TS and WF):

- WF has greatest impact on Al loss (WF>>BP,TS)
- BP also plays a significant role
- TS is insignificant

Impact of Parameter Coupling:

- WF and all 2-level interactions had more impact on Al loss
- than either BP or TS
- BP and TS separately had minimal effect but together caused 2nd largest Al loss
- TS was equivalent to the 3-level coupling and both were insignificant

Cynthia.l.lach@nasa.gov

Micro-Chemistry Results of Multi-bead Deposit (10)

Effect of reducing BP while holding TS and WF constant

- Discrete change in Al and Ti wt% at the base plate and deposit intersection
- Slight loss of Al through deposit
- Al loss is independent of microstructure and bead interfaces
- V content is unaffected by the EBF³ process

Future Work

- Complete DOE composition study for bulk and micro chemistries
 - Conduct micro-chemistry of single-bead deposits
- Examine bead microstructure and geometry resulting from processing parameters
- Develop better understanding of the effect of energy density level on bead geometry and chemistry